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Abstract

Cellular FAs (focal adhesions) respond to internal and external mechanical stresses which make them prime candidates for
mechanotransduction. Recent observations showed that the FA proteins including vinculin, FAK (FA kinase) and p130Cas
are crucial for the ability of cells to transmit forces and to generate cytoskeletal tension. When mechanically stimulated,
cells respond by modulating the spreading area, remodel the actin cytoskeleton, activate actomyosin interactions, recruit
integrins and reinforce FAs and cytoskeletal structures. These complex cellular responses are orchestrated such that
mechanical stresses within the FA complex remained within a narrow range.
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1. Introduction

Cell adhesion and cell-cell contacts critically influence cell
metabolism, protein synthesis, cell survival, cytoskeletal architec-
ture and consequently cell mechanical properties such as mi-
gration, spreading and contraction (Goldmann, 2002a, 2002b;
Klemm et al., 2006; Grashoff et al., 2010; Hoffman et al., 2011). An
important group of adhesive transmembrane receptors that
mechanically link the ECM (extracellular matrix) with the internal
cytoskeleton are integrins (Hynes, 2002). Integrins are intimately
connected with the FAs (focal adhesions) which consist of pro-
teins, including vinculin, p130Cas and FAK (FA kinase; Alenghat
and Ingber, 2002). The formation of FAs is greatly augmented
either through externally applied tension to the cell or internally
through myosin Il-driven cell contractility. FAs sense mechanical
stresses and function regardless of the intracellular versus extra-
cellular origin (Balaban et al., 2001; Geiger and Bershadsky, 2002;
Bershadsky et al., 2003, 2006).

2. Mechanotransduction

Seminal observations by Don Ingber and others (Wang et al.,
1993; Ezzell et al., 1997; Goldmann et al., 1998; Dey et al., 2011),
using a magnetic twisting device to transfer forces directly from
integrins to the local cytoskeleton suggests that mechanical de-
formation of one or more adhesion plaque proteins is the
proximal step in an intracellular signalling cascade that leads to
global cytoskeletal rearrangements and mechanotransduction at
multiple, distant sites within the cell. Phosphorylation of FA
proteins assists in the recruitment and binding of FA proteins by
regulating protein—protein interactions in proteins that contain the
SH2 (Src homology 2) domain, including paxillin, FAK and
p130Cas, whereas Src kinase activation and interaction with
vinculin initiates tyrosine phosphorylation of paxillin and p130Cas
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that leads to FA turnover and cell migration (Brabek et al., 2004;
Subauste et al., 2004).

Exactly which protein within FAs acts as a mechanosensor/
coupler/regulator or transmitter, however, is currently debated
and numerous candidates have been proposed. In the following, |
focus on three proteins that are located within the FAs and
presently regarded as principal mechanotransducer of adherent
cells.

3. FAs

It was shown that in mechanically stimulated fibroblasts and
myocytes, FAK and paxillin were mainly affected (Wang et al.,
2001; Sawada and Sheetz, 2002; Torsoni et al., 2003). These
proteins are recruited to FAs and not to the actin cytoskeleton,
which indicates that mechanical distortion of FAs itself is at the
origin of mechanical signalling. Roovers and Assoian (2003)
demonstrated that the effect of integrin clustering (in response to
force generation) on FAs is required for sustained FAK and MAPK
(mitogen-activated protein kinase) activation. Artificially cluster-
ing of integrins with antibodies relieved the requirement for
actomyosin-dependent tension, which strongly suggests that
FAs are the key site of mechanosensing. Experiments carried out
on matrices that have different regions of elasticity, cells
migrated towards areas of higher substrate rigidity. This effect
required the expression of FAK, suggesting that this molecule is
involved in sensing forces (Lo et al., 2000). Interestingly, FAK
phosphorylation on Tyr®®’, is sensitive to the tethering of integrins
to a rigid substratum, whereas integrin clustering alone regulates
phosphorylation on other sites of FAK (Shi and Boettiger, 2003).
Stretching of the actin cytoskeleton also increased the binding of
FAK to paxillin and p130Cas (Sawada et al., 2006). It appears that
FAK is a key component of the mechanosensing apparatus and
both FAK and its interacting partners seem candidates for
mechanotransduction (Figure 1). In all, the information presented
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Upon cell attachment via integrins to the ECM, cells start to spread, form FAs, and connect to the actin cytoskeleton to generate internal pre-

from various research groups suggests a possible mechanism(s)
for mechanotransduction within FAs: (i) when force is applied to
integrins, which results in clustering because of increased
actomyosin recruitment and cytoskeletal assembly, this could
contribute to increased receptor density and integrin signalling
and (i) that tension alters the conformation of FAs to induce new
binding interactions or direct modulation of enzymatic activity.
Conformational changes resulted in activation of tyrosine kinases
such as FAK to mediate mechanotransduction. Wang et al. (2001)
and Lo et al. (2000) reported that FAK-null and FAK-Y397F
expressing fibroblasts failed to reorient in response to mech-
anical force and to form prominent FAs compared with FAK
expressing cells; and Yamamoto et al. (2001) showed MAPK
activation and gene expression in neonatal cardiac myocytes
after applying mechanical strain. Fundamental questions about
mechanotransduction within integrin-mediated adhesions, how-
ever, remain unanswered. Elucidating the detailed mechanism by
which forces are converted to chemical signals and cytoskeletal
rearrangements is the endeavour of many laboratories, including
ours.

Vinculin levels within FAs were reported to correlate linear-
ly with traction forces (Balaban et al., 2001). Using beads coated
with fibronectin in laser trapping studies showed that the

recruitment of vinculin was required for the development of
tension between the bead and the cell. This was associated with
FAs strengthening or reinforcements (Galbraith et al., 2002). The
loss of cytoskeletal tension resulted in a rapid dissociation of
vinculin from FAs suggesting that force is required for both FAs
development and maintenance (Rottner et al., 1999; Méhl et al.,
2009). Vinculin in FAs must therefore be regarded as mechanical
coupling and regulating but not as mechanosensing protein
(Goldmann et al., 1995; Ezzell et al., 1997). Other reports showed
that the interaction between FAK and paxillin, and its activation
are also critical for intracellular signalling (Ostergaard et al., 1998;
Turner, 1998, 2000; Turner et al., 1999). Subauste et al. (2004)
described a signalling pathway whereby vinculin controls
FAK-paxillin interaction and alters ERK1/2 (extracellular-signal-
regulated kinase 1/2) activity that includes p130Cas and Crk-Il, by
regulating cell survival and motility. We recently showed that vin-
culin acts as a regulator for contractile force generation, and that
vinculin transfection restores the contractility of vinculin-deficient
F9 mouse embryonic carcinoma cells and MEFs (mouse embry-
onic fibroblasts; Mierke et al., 2008, 2010; Diez et al., 2009; Fabry
et al., 2011).

Mechanoreception, transduction and force sensing is a
crucial function for p130Cas (Tamada et al., 2004; Yoshigi et al.,
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2005). As a mechanosensor, p130Cas responds to the external
stress by phosphorylation, which initiates the downstream
pathways through MAPK cascade (Sawada and Sheetz, 2002).
Basal- or stress-mediated phosphorylation of p130Cas, requires
its binding partners, such as FAK and SFK (Src family kinase)
(Sawada et al., 2006). p130Cas was reported as an actin filament
assembling protein (Honda et al., 1999), though no direct
interaction with actin has been reported to date. Detection of
p130Cas in FAs of FAK null cells (Nakamoto et al., 1997)
indicates the presence of other SH3 domain binding partners,
which may connect the gap between p130Cas and actin fibres.
Reports of co-localized p130Cas and vinculin (Nakamoto et al.,
1997) triggered a study to examine the interaction between them
(Dey et al., 2011). Vinculin reacts with talin or other neck-binding
proteins (Cohen et al., 2005), and in turn recruits paxillin to
enhance integrin clustering (Humphries et al., 2007). From a more
recent study by Janostiak et al. (2011), the position Tyr'? of
p130Cas SH3 domain was found to be extremely influential for
FAK binding and successive maturation of FA complexes. We
also studied the effect of the Tyr'? position on vinculin binding,
and its influence over the subsequent stretch-mediated mechan-
otransduction pathway, through p130Cas phosphorylation. We
found that vinculin indeed interacts with p130Cas and influences
its basal level or stretch-mediated phosphorylation upon mech-
anical stress (unpublished observation by Radoslav Janostiak,
Jan Brabek, Daniel Rosel, University of Prague and Wolfgang H
Goldmann, University of Erlangen). The impact of vinculin on
subsequent ERK1/2 phosphorylation was found to be significant
and comparable to FAK. Phospho-mimicking and non-phosphor-
ylatible mutations were observed to control vinculin binding in
vivo and successive phosphorylation of p130Cas and ERK1/2. As
a FA and mechanosensing protein, p130Cas is involved in
integrin-mediated adhesion and cell migration through multiple
signalling pathways (Tikhmyanova et al., 2010). Complete
absence of FAK, does not abolish the FA targeting of p130Cas
fully (Meenderink et al., 2010), which makes the existence of
some other binding partner for SH3 domains very obvious. As an
FA protein, p130Cas has itself no actin-binding domain, but
influences the actin stress fibre formation (Honda et al., 1999)
possibly through one of its binding partners. In some previous
study, vinculin was reported to co-localize with p130Cas
(Nakamoto et al., 1997). Presently, we analyse the interaction
between vinculin and p130Cas, as vinculin might be the ‘other’
binding partner for p130Cas, through its proline-rich neck region
(Winkler et al., 1996; Critchley, 2000).

Future research should advance our understanding on how the
cytoskeleton of cells deforms and transmits stresses via FA sites. To
test that force transmission through the cytoskeleton is mechanically
highly heterogeneous (Goldmann, 2012), and that the FA proteins are
important mechanotransducer for a variety of fundamental cell
functions including cell division, motility and differentiation, this
research will have wide implications in medicine and biology that go
well beyond the immediate issues of cellular function.
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